Use of Arabidopsis thaliana and Pseudomonas syringae in the Study of Plant Disease Resistance and Tolerance.

نویسندگان

  • A F Bent
  • B N Kunkel
  • R W Innes
  • B J Staskawicz
چکیده

The interaction between Arabidopsis thaliana and the bacterium Pseudomonas syringae is being developed as a model experimental system for plant pathology research. Race-specific ("gene-for-gene") resistance has been demonstrated for this interaction, and pathogen genes that determine avirulence have been isolated and characterized. Because certain lines of both Arabidopsis and soybean are resistant to bacteria carrying the avirulence genes avrRpt2 and avrB, extremely similar pathogen recognition mechanisms are apparently present in these two plant species. Isogenic bacterial strains that differ by the presence of single avirulence genes are being used to analyze plant resistance. Plant resistance genes have been identified in crosses between resistant and susceptible lines. The extensive map-based cloning tools available in Arabidopsis are being used to isolate these resistance genes. In a related project, ethylene-insensitive Arabidopsis mutants are being used to examine the role of ethylene in disease development. Ethylene apparently mediates symptom formation in susceptible plants and is not required for resistance, suggesting possible strategies for enhancement of disease tolerance in crops.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic variation for disease resistance and tolerance among Arabidopsis thaliana accessions.

Pathogens can be an important selective agent in plant evolution because they can severely reduce plant fitness and growth. However, the role of pathogen selection on plant evolution depends on the extent of genetic variation for resistance traits and their covariance with host fitness. Although it is usually assumed that resistance traits will covary with plant fitness, this assumption has not...

متن کامل

Impact of initial pathogen density on resistance and tolerance in a polymorphic disease resistance gene system in Arabidopsis thaliana.

The evolution of natural enemy defense shapes evolutionary trajectories of natural populations. Although the intensity of selection imposed by enemies clearly varies among natural populations, little is known about the reaction norm of genotypes under a gradient of selective pressure. In this study, we measure the quantitative responses of disease symptoms and plant fitness to a gradient of inf...

متن کامل

Genetic variation for induced and basal resistance against leaf pathogen Pseudomonas syringae pv. tomato DC3000 among Arabidopsis thaliana accessions

In Arabidopsis thaliana, significant efforts to determine the effect of naturally occurring variation between phenotypically divergent accessions on different biotic or abiotic stresses are underway. Although it is usually assumed that induced systemic resistance (ISR) against pathogen will covary with plant genetic variation, this assumption has not been tested rigorously in previous experimen...

متن کامل

Deciphering host resistance and pathogen virulence: the Arabidopsis/Pseudomonas interaction as a model.

SUMMARY The last decade has witnessed steady progress in deciphering the molecular basis of plant disease resistance and pathogen virulence. Although contributions have been made using many different plant and pathogen species, studies of the interactions between Arabidopsis thaliana and Pseudomonas syringae have yielded a particularly significant body of information. The present review focuses...

متن کامل

Yeast Cell Wall Extract Induces Disease Resistance against Bacterial and Fungal Pathogens in Arabidopsis thaliana and Brassica Crop

Housaku Monogatari (HM) is a plant activator prepared from a yeast cell wall extract. We examined the efficacy of HM application and observed that HM treatment increased the resistance of Arabidopsis thaliana and Brassica rapa leaves to bacterial and fungal infections. HM reduced the severity of bacterial leaf spot and anthracnose on A. thaliana and Brassica crop leaves with protective effects....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of nematology

دوره 25 4  شماره 

صفحات  -

تاریخ انتشار 1993